Nanoscale Semiconductor Devices as New Biomaterials.

نویسندگان

  • John Zimmerman
  • Ramya Parameswaran
  • Bozhi Tian
چکیده

Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors. Third, we present the use of nanowire transistors as electrical recording devices that can be integrated into synthetic tissues and targeted intra- or extracellularly to study single cells. Lastly, we discuss future directions and challenges in further developing this area of research, which will advance biology and medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging of self-assembly and self-assembled materials

Self-assembled materials have recently been of great interest to a wide range of scientists for multiple, and indeed quite disparate applications. Self-assembly has been proposed as a route to photonic band gap materials, semiconductor devices, molecular sieves, biomaterials, and molecular monolayers. For many of these processes, there are few very good routes to image the self-assembly process...

متن کامل

Phonon Engineering in Hetero- and Nanostructures

Phonons, i.e., quanta of lattice vibrations, manifest themselves practically in all electrical, thermal, optical, and noise phenomena in semiconductors and other material systems. Reduction of the size of electronic devices below the acoustic phonon mean free path creates a new situation for the phonons propagation and interaction. From one side, it may complicate heat removal from the downscal...

متن کامل

Numerical Simualtion of Nanoscale Semiconductor Devices

Device modeling of novel semiconductor devices requires adapted physical models which include quantum mechanical effects. The quantum hydrodynamic as well as the quantum drift diffusion model offers effective possibilities for the simulation of nanoscale devices, particularly if tunneling processes appear. The models can be implemented effectively in conventional device simulation systems.

متن کامل

Design and Optimization of Complex Nanoscale Electron Devices by Simulations with Quantum Transport Models

Integrated circuits which using complex nanoscale electron devices hold promise as a technology for ultra dense high speed integrated digital logic circuits. Especially the negative differential resistance of the current-voltage characteristic in resonant tunneling diodes (RTDs) can be used to reduce device counts per circuit functions, thus increasing circuit integration density. In particular...

متن کامل

Scattering in Nanoscale Devices

In this thesis electronic transport through nanoscale devices is modeled by means of quantum physics. Moving from ballistic transport towards a detailed description of electron-phonon scattering, the used formalism changes from wave functions to the non-equilibrium Green’s functions (NEGF). The simulation framework consists of the quantum mechnical simulator SIMNAD, which was developed at the I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials science

دوره 2 5  شماره 

صفحات  -

تاریخ انتشار 2014